Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571).

نویسندگان

  • Lara Wohlbold
  • Heiko van der Kuip
  • Cornelius Miething
  • Hans-Peter Vornlocher
  • Cornelius Knabbe
  • Justus Duyster
  • Walter E Aulitzky
چکیده

Bcr-Abl proteins are effective inducers of the leukemic phenotype in chronic myeloid leukemia (CML) and distinct variants of acute lymphoblastic leukemia (ALL). Targeting bcr-abl by treatment with the selective tyrosine kinase inhibitor imatinib has proved to be highly efficient for controlling leukemic growth. However, it is unclear whether imatinib is sufficient to eradicate the disease because of primary or secondary resistance of leukemic cells. Therefore, targeting Bcr-Abl with an alternative approach is of great interest. We demonstrate that RNA interference (RNAi) with a breakpoint-specific short-interfering RNA (siRNA) is capable of decreasing Bcr-Abl protein expression and of antagonizing Bcr-Abl-induced biochemical activities. RNAi selectively inhibited Bcr-Abl-dependent cell growth. Furthermore, bcr-abl-homologous siRNA increased sensitivity to imatinib in Bcr-Abl-overexpressing cells and in a cell line expressing the imatinib-resistant Bcr-Abl kinase domain mutation His396Pro, thereby antagonizing 2 of the major mechanisms of resistance to imatinib.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Expression Of SIRT1 Gene In Patients With Chronic Myeloid Leukemia Resistant To Imatinib Mesylate

Background: Chronic myeloid leukemia is a clonal myeloproliferative disease which is characterized by bcr/abl translocation. With the emergence of tyrosine kinase inhibitors such as imatinib mesylate, significant improvement has been made in treatment of this disease. However, drug resistance against this medicine is still an obstacle. SIRT1 is a gene with deacetylase activity which has been de...

متن کامل

Inhibition of BCR/ABL Protein Expression by miR-203 Sensitizes for Imatinib Mesylate

Selective inhibition of BCR/ABL expression by RNA interference has been demonstrated as an effective strategy in CML treatment and a reversal to imatinib resistance. microRNAs (miRNAs) are small regulatory RNAs involved in post-transcriptional gene regulation. miR-203 is supposed to directly regulate ABL and BCR/ABL expression, however, the role of miR-203 in imatinib-resistant cells is not cle...

متن کامل

RUNX1T1 is overexpressed in imatinib mesylate-resistant cells.

The Philadelphia (Ph) chromosome, which occurs as a result of a translocation between chromosomes 9 and 22, generates a BCR-ABL fusion oncogene in leukaemia cells. The BCR-ABL fusion protein has constitutive tyrosine kinase activity. The development of imatinib mesylate (STI571, Gleevec®), a potent and selective BCR-ABL tyrosine kinase inhibitor, represents an important advance in cancer therap...

متن کامل

A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2.

The relationship between the Src kinase Lyn and Bcl-2 expression was examined in chronic myelogenous leukemia cells (K562 and LAMA84) displaying a Bcr/Abl-independent form of imatinib mesylate resistance. K562-R and LAMA-R cells that were markedly resistant to induction of mitochondrial dysfunction (e.g. loss of mitochondrial membrane potential, Bax translocation, cytochrome c, and apoptosis-in...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 102 6  شماره 

صفحات  -

تاریخ انتشار 2003